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Abstract. On the basis of the one-dimensional electron gas model, we use the memory 
function formalism to calculate the conductivity limit in heavily doped polyacetylene set by 
longitudinal acoustic phonon scattering. We have found that the impurity ion scattering can 
be ignored for real doping concentrations. At room temperature the intrinsic conductivity 
is estimated to be about 7 X 10' W'  cm-' which is greater than those of most conventional 
metals. 

1. Introduction 

There has been considerable theoretical and experimental interest in the transport 
properties of polyacetylene in recent years. This is because its electrical conductivity can 
be quite changed when it is doped with impurities and a new concept of soliton excitation 
in it has been proposed to explain many experimental facts. For example, in the region 
of impurity concentration y < 0,001, polyacetylene is an insulator or semiconductor, 
but for the regime 0.001 < y < 0.06 its conductivity o can be rapidly varied by more 
than 12 orders of magnitude on chemical or electrochemical doping and finally, when 
y > 0.06, it becomes a metal for which relatively simple and traditional metallic behav- 
iour is observed. Recently in [I] a fine technique was developed to synthesise poly- 
acetylene with a smaller number of sp3 defects than in polyacetylene made by other 
methods. A reduced number of sp3 defects implies a more perfect chain with longer 
average conjugation lengths. The improvements in synthesis and orientation have led 
to an electrical conductivity in the heavily doped sample of greater than 1.5 x lo5 S2-l 

cm-', which is close to the value for copper! However, the absence of a metallic 
temperature dependence indicates that the conductivity could be significantly raised by 
material perfection, and finally its value could be greater than that of copper. Therefore, 
it is of great interest to determine the possible limit on the intrinsic conductivity of 
heavily doped polyacetylene set by phonon and impurity scattering. 

To date there is no unified mechanism to explain the transport properties for all 
doping regimes. At  very low doping levels 0, < 0.1 %) the soliton band created by doping 
in the gap would be all filled (for donors). So, there are no free mobile charged carriers 
in the sample. In this regime the conductivity arises from the inter-soliton hopping of 
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electrons assisted by a few mobile neutral solitons as proposed in [2]. As to the transport 
in the intermediate-doping regime, although a number of different models have been 
proposed, it seems that no one has been able to explain the coexistence of both the high 
0 and the low Pauli susceptibility in this region successfully. Of the various models the 
variable-range hopping mechanism [3] and the Mott-type many-body effect mechanism 
[4] are the most promising. When y > 0.06, it is called a heavily doped regime in which 
metallic behaviour has been observed, but there is also considerable evidence that 
dimerisation or an energy gap persists into this high-doping regime [5]. There are also 
several theories for this regime [6,7]. Unfortunately, however, it seems that this metallic 
polyacetylene is not yet understood. 

In this paper, on the basis of the one-dimensional electron gas model we use the 
memory function formalism [8] to investigate the intrinsic conductivity limit set by only 
longitudinal acoustic phonon scattering. It is well known that this formalism has been 
successfully used to discuss the transport properties of electron gas, including the one- 
and two-dimensional transport problems. 

In § 2, we present the model Hamiltonian of a quasi-one-dimensional conductor for 
the problem and the memory function method, and in § 3 we calculate the electron- 
phonon scattering rate. In § 4 we investigate the impurity ion scattering and find that it 
is ineffective in scattering conduction electrons. The impurities have two kinds of 
effect on the conductivity of doped polyacetylene. On the one hand, donor (acceptor) 
impurities give up electrons (holes) to the polyacetylene chains and create soliton levels 
in the gap. In the heavily doped regime, the energy gap is much reduced and the levels 
spread well across the gap [9]. The increase in charged carriers and decrease in the 
energy gap with increase in impurity concentration undoubtedly cause an increase in 
conductivity in this regime. On the other hand, impurity ions can scatter the conduction 
electrons (or holes) and so decrease the conductivity but, in a quasi-one-dimensional 
conductor such as polyacetylene chains, most dopant ions are not on the chains, i.e. not 
on the quasi-one-dimensional conduction path. Therefore the effective back-scattering 
is much reduced. In addition, owing to the quasi-one-dimensional nature of the charged 
transport in the doped polyacetylene, only the 2kF Fourier component of scattering 
potential is important. So, the effect on conductivity from impurity ion scattering is 
further reduced, and in fact can be ignored for a real doping concentration compared 
with the electron-phonon scattering. Finally, in § 5 ,  we summarise the main points of 
the present paper and discuss them briefly. 

2. Model Hamiltonian 

The heavily doped polyacetylene can in many ways be thought of as a simple anisotropic 
metal. For example, its ail is close to metal value [lo] and it has a metal-like Pauli spin 
susceptibility [ l l ] .  The linear temperature dependence of its thermopower also indicates 
the metal-like behaviour [12]. Optical infrared and electron energy loss experiments 
support the absence of an energy gap in the heavily doped regime [13]. Although 
persistence of the doping-induced infrared absorption lines to a higher value of (y) [14] 
shows non-uniformity of charge density along the chains and indicates oversimplification 
of the simple metal picture, we think that at least to a first approximation the heavy 
doped polyacetylene chains can be treated as a simple anisotropic metal picture. 

In this work, we consider the polyacetylene as being composed of many parallel 
infinite long chains with a spacing of about 4 A. Since the transverse hopping matrix 
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element t ,  is much less than the longitudinal hopping matrix element ql (t,/tll = 0.03), 
the coupling between different chains is rather weak and usually can be ignored, 
especially when we are concerned only with the problem of the maximum conductivity 
reached in the heavily doped sample. So, the system can be approximately thought of 
as a quasi-one-dimensional conductor. However, we have to emphasise that the inter- 
chain coupling is necessary to avoid one-dimensional localisation caused by disorder of 
the impurities. Recently in [15] this problem was discussed in. detail and a criterion was 
given such that L / a  P 2til/t,, where L is the distance between chain breaks and a is the 
projection of the carbon-carbon distance along the chain direction. So long as the 
inequality is satisfied, the one-dimensional localisation due to any disorder can be 
avoided, and the conductivity is limited by L and by the phonon scattering. 

Because the n-electron band width is about 4t0 = 10 eV, we adopt the free-electron 
approximation for the band structure with &k = k2/2m, which is more appropriate to the 
heavily doped region than to the tight-binding model. Since the number of thermally 
excited optical phonons at room temperature is small, these phonons are not expected 
to play an important role in scattering conduction electrons. So in this paper we shall 
consider only the acoustic phonon branch. 

Finally we completely neglect the Coulomb interaction between electrons. This 
implies that we do not think the collective excitations due to many-body effect have a 
large effect on the transport properties in conducting polymers, and only single-particle 
theory is used in this paper. 

We choose the Hamiltonian to be as follows: 

where cLu and cko are the electron creation and annihilation operators, hp' and b, are the 
phonon creation and annihilation operators with electron momentum k ,  spin CT and 
phonon wavevector q. u(q) is the impurity scattering potential, and D ( q )  is the inter- 
action matrix element of electrons with the longitudinal acoustic phonons. The phonon 
frequency is represented by the Debye model, oq = vsq,  with U ,  the velocity of sound. 

Let us briefly review the procedure for obtaining the DC conductivity from the 
standard memory function approach [8]. It has been pointed out [16] that the memory 
function method or force-balance approach is appropriate under isothermal conditions, 
while the Boltzmann equation or Kubo formula is valid under adiabatic conditions. 
However, for a typical metal where the chemical potential of electrons is usually much 
larger than temperature ( U  * 73, the isothermal and adiabatic resistivities obtained from 
two methods agree with each other. 

It is well known that the dynamic conductivity deduced from the current-current 
correlation function can be written as [17] 

o(o) = (ine2/mo)[I + M ( u ) / o ]  ( 2 )  

where n is the electron density, m is the electron mass and M ( W )  is the memory function. 
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Since we choose the free-electron model to describe our system, the Drude formula for 
conductivity can be used: 

a(@) = i(ne2/m)[o + i/z(w)]-' (3) 

where z ( w )  is the relaxation time function. In the high-frequency limit, equation (3) 
reduces to 

o(o) = (ine2/mw)[1 - i/wt(w)]. (4) 

l / t ( w )  = iM(w). ( 5 )  

Comparing (4) with (2), one obtains [17] 

In general, M ( w )  = M , ( w )  +iM2(w) is a complex function with M,(o) and M2(w)  as 
real functions. Taking the limit w+ 0, we obtain l/z(O) = - M2(0) with M,(O) = 0 so 
that equation (3) becomes 

o(0) = ne2z(o)/m = - ne2/mMz(0) (6) 

which is the expression for the DC conductivity or the inverse resistivity l / p .  The 
expression for M2(0) can be derived as the linear limit of a frequency-dependent gen- 
eralisation of the balance equation [NI. It can be written as the sum of twc) terms 
M2(0) = Mi(0) + M:h(0), with M i ( 0 )  and M:h(0) being the impurity contribution and 
phonon contribution respectively, to the memory function: 

where y is the impurity concentration and N is the number of CH units per chain. qx is 
the component of phonon momentum along the electric field direction, and .(U,) = 
l/[exp(o,/T) - 11 is the phonon distribution function. n2(4, z )  denotes the imaginary 
part of the electron density-density retarded correlation function. When the electron- 
electron interaction is neglected, the expression for n2(q, z )  is 

where f ( & k )  is the usual Fermi function. For the one-dimensional case it is easy to 
calculate n2 (q ,  z )  by replacing the summation over k by the integration 

where L is the length of the one-dimensional chain. 
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3. The intrinsic conductivity 

In this section we first take account of the resistivity due to the phonon scattering and 
leave the effect of the impurity scattering to the next section. Substituting equations (10) 
into (8), and replacing Eq by J dq (L/2n), we have 

Since ,U + T, f(x) can be approximately represented by O(p - x); here O(x) is the usual 
step function, and equation (11) then reduces to 

For kF + mu , or uF + U,, the integral above can be approximately evaluated by means 
of the middle value theorem of integral, yielding 

Mih(0) = - (8mwoL2/7cNT)/D(2kF)/’ exp(oo/T)[exp(wo/T) - 1]-* (13) 
with w o  = 2kFu,. Therefore, from (6) we finally obtain the following expression for the 
DC conductivity for our system: 

a( 0 )  = (ne’ /m)  (nNT/2m0 L 2 ,  I D (2kF) 1 -’ sinh * (w /2 T ) .  (14) 
We wish to discuss the temperature dependences of a(0) for two limited cases. In the 
limit coo + T, we have 

O ( 0 )  = (ne2n/8m2 COo)(N/L2)~D(2k~)I-* TeXp(Wo/T). 

a( 0) = ( n e 2 / m )  (nN/8m L2 ) 1 D( 2 k ~ )  1 -’ (0 0 / T ) .  

(15) 

(16) 

Oppositely, when w o  4 T, equation (14) becomes 

For heavily doped polyacetylene, h o o  = 0.12 eV, which is obviously much larger than 
kBT at room temperature. So, equation (15) for a(0) should be suitable for our system. 
The electron-phonon scattering matrix element D(2kF) can be found directly from the 
Su-Schrieffer-Heeger (SSH) Hamiltonian. 

D(2kF) = -i4a(2NMwo)-”’ (17) 
where M is the CH unit mass, and a i s  the electron-phonon coupling constant in the SSH 
Hamiltonian [19]. In the present free-electron model, we have h2k$/2m = 
p = 2to, where to is the melectron hopping matrix element in the tight-binding 
approximation and kF = n/2u. It then follows that nz = fi2n2/16tou2. substituting 
(17) into (15) and inserting the Planck constant fi and the Boltzmann constant kB 
when necessary (which are omitted in the previous equations for simplicity), we have 

a(0) = (4e’/f in3a)(na3)(Mw,t~/ha*)(k,  T /ho , )  exp(hoo/k, T ) .  (18) 
In deriving (18) we have used the relation L/N = a. Equation (18) is similar to the result 
obtained previously in [20] using the Boltzmann equation but differs from the result in 
[15] by a factor of (kBT/hwo) .  We consider that this factor is necessary; otherwise, when 
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the temperature increases to kBT >> noo, we shall not be able to obtain the linear T 
dependence of the metal-like resistivity but instead get an incorrect dependence p cc T2. 

~ m - ~ ,  no = 
0.12 eV, to = 2.5 eV and a = 4.1 eV A-'. At room temperature T = 300 K,  we estimate 
that a(0) = 7 x los Q-' cm-' which can be regarded as the maximum value of a(0) for 
heavily doped polyacetylene. 

We adopt the following parameters in (18): a = 1.23 A, II = 4.5 X 

4. Resistivity due to impurity scattering 

We now turn to the effect of impurity scattering on the resistivity. In the previous section 
we have given equation (10) for I12(q, z )  from which it is easy to evaluate its derivative 
as 

[dn2(q,  z)/dzIz=o = - (2mL/qlf(q2/8"l -f(q2/8m)l. (19) 
Within the experimental temperature range T ,U, the factorf(q2/8m)[l - f(q2/8m)] is 
approximately a &function: 6(q2/8m - ,U). Thus, from (7) we obtain the memory 
function due to impurity scattering: 

M;(O) = - (8J"l!~~/n)/U(2k~)/~ (20) 
and, finally, the corresponding resistivity is 

pi = - mMi(0)/ne2 

if the Planck constants are inserted when necessary. Following [15], the 2kF-component 
of the impurity scattering potential is taken to be of the following form: 

Iu(2kF)I2 = 4 ( e 2 / ~ o ~ ) 2 ( a / 6 )  exp(-2n6/a) (22) 
where 6 = ~ ( E , , / E ~ ) ' / ~ ,  with b the distance of the impurity ion from the chain, and 

we obtain 

and 
the dielectric constants parallel and perpendicular, respectively, to the chain. Finally, 

pi = 32y(m/ne2)[m(e2/~o)2/nn3](a/6) exp( -2nbla). (23) 
For a minimum 6 /u  = 2, eo = 2 and y = 0.15, from (23) we estimate pi = 3 X 52 cm 
which is much smaller than p p h .  If the anisotropic screening effect is included, p1 will be 
further reduced. 

5. Discussion and summary 

In this paper we have found the possible limit of the conductivity in heavily doped 
polyacetylene under a very simple model using the memory function formalism. We 
have shown that the limit should be mainly set by the electron-phonon interaction, and 
the scattering from impurity ions has only a little effect on it. However, it does not rule 
out the possibility that some localised defects (e.g. chain ends and cross links) could 
have a large effect on the intrinsic conductivity. This kind of defect is not included in 
this work, and this important problem is left to a future discussion. 
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Using (18) and a set of chosen parameters used in the SSH model, we obtain the 
intrinsic conductivity at room temperature which is less than the value obtained in [15]. 
It is because in [15] the dependence of the electron-phonon scattering matrix elements 
and wo on the magnitude of k away from 5 kF was completely ignored. So, a formula of 
DC conductivity was derived in [15] which is similar to our equation (18), but without the 
factor kgT/Tm0 (which equals approximately 0.2, for noo = 0.12 eV at room tempera- 
ture). Therefore, we think that the results in [15] overestimate the intrinsic conductivity 
of heavily doped polyacetylene. Even so, there is still good reason to say that the 
conductivity of heavily doped polyacetylene could be higher than that of conventional 
metals including copper. 

In addition, it can be seen from (18) that we should make new conducting polymers 
with a higher molecular weight and frequency coo to attain a higher conductivity than 
that of heavily doped polyacetylene. 

Finally, we should mention that our method can include the interaction between 
electrons, if future experiments demonstrate the importance of many-body effects. Our 
theory is also applicable to other quasi-one-dimensional systems and is not restricted 
only to the conducting polymer. 
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